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I. Review of the Sources of Degradation and Their Impact in SPECT Reconstruction

A. Ideal imaging

Data acquisition for the case of ideal SPECT imaging is illustrated in Figure 1, which portrays a
single-headed gamma camera imaging a source distribution f(x,y) at a rotation angle θ with respect to the
x-axis. The camera is equipped with a parallel-hole absorptive collimator, which for this ideal case only
allows photons emitted from f(x,y) in a direction parallel to the collimator septa to pass through to the
NaI(Tl) crystal, and be detected.  The source distribution in Figure 1 is a cartoon drawing of a slice
through the three-dimensional (3D) mathematical cardiac-torso (MCAT) phantom [1] with a Tc-99m
sestamibi distribution. Let (t, s) be a coordinate system rotated by the angle θ counter-clockwise with
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respect to the (x, y) coordinate system. Then t and s can be written in terms of x and y, and the rotation
angle θ as [2]:

t =  x cos θ  + y sin θ (1)
s = -x sin θ + y cos θ .

The ray sum ( p(θ,t')) is the line integral over f(t,s) with respect to s for t = t', or
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where δ is the delta function, and Equation 1 was used to express t in terms of x, y, and θ. The function
p(θ,t) for the case of ideal imaging is the Radon transform of f(x,y), and is the parallel projection of f(x,y)
for a constant value of θ [3]. By rotating the camera head about the patient a set of projections is acquired
for different projection angles. This set of projections constitutes the data that will be used to estimate the
source distribution from which they originated. Figure 2 shows the overlaid ideal projections of a point
source in the liver of the MCAT phantom at projection angles of 00 (left lateral), 450 (left-anterior
oblique), 900 (anterior), and 1350 (right-anterior oblique) relative to the x-axis in Figure 1. The location of
the point source is indicated as the black circular point within the liver and on the x-axis in Figure 1.
Notice in the ideal case, the projections are all of the same size and shape, and vary with projection angle
just in their positioning along the t-axis. When the projections are stacked one on top of the other for
viewing, they form a matrix called the sinogram. The matrix is so named because with 360 degree
acquisitions each location traces out a sine function whose amplitude depends on the distance from the
center-of-rotation (COR) and phase depends on its angular location.

B. Sources of image degradation

SPECT imaging is not ideal, however. Inherent in SPECT imaging are degradations, which distort
the projection data. This chapter will focus on three such degradations, and the compensation for them.
The first is attenuation. In order for a photon to become part of a projection, it must escape the body.  As
illustrated in Figure 3, photons emitted such that they would otherwise be detected may be either
photoelectrically absorbed (photon A) or scattered (photon B) such that they will be lost from inclusion in
the projections.  Thus the attenuated projections (pA(θ,t)) will contain fewer events than the ideal
projections. This is illustrated in Figure 4, which shows the attenuated projections of the point source of
Figure 2. Note how the reduction in the number of detected events varies with the thickness and nature of
material through which the photons must travel to be imaged. The extent of attenuation can be quantified
mathematically by the transmitted fraction (TF(t', s', θ)), which is the fraction of the photons from
location (t', s') that will be transmitted through a potentially non-uniform attenuator at angle θ.  The
transmitted fraction is given by:
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where  µ(t,s) is the distribution of linear attenuation coefficients as a function of location. Equation 3 is
accurate only for a mono-energetic photon beam, and under the assumption that as soon as a photon
undergoes any interaction, it is no longer counted as a member of the beam. The latter is the "good
geometry" condition [4,5]. The attenuated projections are obtained from the ideal projections by including
TF within the integrals of Equation 2. As a result of the differences in attenuation coefficient with type of
tissue, the TF will vary with the materials traversed even if the total patient thickness between the site of
emission and the camera is the same. That is, it makes a difference if the photons are passing through
muscle, lung, or bone. Similarly, a change in TF will occur if the amount of tissue that has to be traversed
is altered. Thus, one needs to have patient-specific information on the spatial distribution of attenuation
coefficients (an attenuation map or estimate of µ(t,s)) in order to calculate the attenuation that occurs
when photons are emitted from a given location in the patient and detected at a given angle.

 The second source of degradation, which will be considered in this chapter, is the inclusion of
scatter in the projections. This, as is illustrated in Figure 5, leads to the inclusion of photons in the
projections that normally would not have been detected. Note that in Figure 6 a logarithmic scaling is used
for the number of counts detected to better illustrate the contribution of scatter. To account for the
presence of scatter, Equation 3 can be modified by multiplying the exponential term by a buildup factor
(B) [4]. The buildup factor is the ratio of the total number of counts detected within the energy window
(primary plus scatter) to the number of primary counts detected within the window. In the “good
geometry” case there is no scatter detected, so the buildup factor is 1.0. For the four point-source
projections in Figure 6 the buildup factors were 1.40 for the RAO view, 1.52 for the anterior view, 1.84
for the left-anterior oblique view, and 2.21 for the left lateral view. Photons undergoing classical
scattering do not change energy during the interaction; thus they can not be separated from transmitted
photons on the basis of their energy. At the photon energies of interest in SPECT imaging, classical
scattering only makes up a small percentage of the interactions in the human body. Compton scattering is
the dominant mode of interaction under these conditions, and during Compton scattering the photon is
reduced in energy as well as deflected from its original path. Thus one can use energy windowing to
reduce the amount of scattered photons imaged, but not eliminate scatter, due to the presence of classically
scattered photons and the finite energy resolution of current imaging systems. In fact, the ratio of scattered
to primary photons in the photopeak energy window (scatter fraction) is typically 0.34 for Tc-99m [6] and
0.95 for Tl-201 [7]. When scatter is neither removed from the emission profiles prior to reconstruction nor
incorporated into the reconstruction process, it can lead to over-correction for attenuation because the
detected scattered photons violate the “good geometry” assumption of Equation 3.

The third source of degradation is the finite, distance-dependent spatial resolution of the imaging
system. When imaging in air, the system spatial resolution consists of two independent sources of blurring
[5]. The first is the intrinsic resolution of the detector and electronics, which is well modeled as a
Gaussian function. The second is the spatially varying geometrical acceptance of the photons through the
holes of the collimator. This response is illustrated in Figure 7. Note in this figure that both photon A,
which is emitted parallel to the s-axis, and photon B, which is angled relative to the s-axis, now make it
through the collimator and are detected. Detailed theoretical analyses of the geometrical point-spread and
transfer functions for multihole collimators have been published [8-11]. In the absence of septal
penetration and scatter, the point-spread function (PSF) for parallel-hole collimators is typically
approximated as a Gaussian function  [12-13] whose standard deviation (σC) is a linear function of
distance given as:

σC (d) = σ0 + σd •  d , (4)
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where d is distance from the face of the collimator, σ0 is the standard deviation at the face of the
collimator, and  σd is the change in standard deviation with distance. Since the two sources of blurring are
independent, they can be analyzed as sub-systems in series [14]. Therefore, the system PSF is the
convolution of the collimator and intrinsic PSF’s. The convolution of two Gaussian functions is a third
Gaussian function. Thus, the system PSF can be approximated by a Gaussian function whose distance-
dependent standard deviation (σS) is given as:

σS (d) = (σC
2 (d) + σI

2) 1/2 , (5)

where σI is the standard deviation of the Gaussian function modeling the intrinsic spatial resolution.
Illustration of the system PSF’s for the point source in the liver of the MCAT phantom is given in Figure
8 for the same 4 projection angles employed in the previous figures. Note the variation in the heights and
widths of these responses due to the variation in distance between the point source and the face of the
collimator.

Attenuation, scatter, and system spatial resolution are three important physical sources of image
degradation in SPECT when imaging with Tc-99m or Tl-201, but they are not the only ones. Other
sources include collimator scatter and x-ray production, septal penetration, patient and physiological
motion, and non-static tracer distributions. The extent to which each of these is important varies with the
energy of the photons emitted, the kinetics of the radiopharmaceutical, and the time required for imaging
the patient. A full discussion of all these factors is beyond the scope of this chapter.

C. Impact of degradations

As detailed in a previous chapter, filtered backprojection (FBP) provides an exact, analytical
solution to reconstructing a slice from the projections in the sinogram. That is, FBP provides an inversion
of the Radon transform [3]. However, as should now be clear, inverting the Radon transform is only part
of the problem. Attenuation of the photons, the acquisition of scattered as well as transmitted photons, and
the inherent distance-dependent finite resolution of the imaging system have also distorted the acquired
projections from the ideal projections. The result is that just inverting the Radon transform does not result
in an accurate estimate of the original source distribution, even in the absence of noise. This is illustrated
in Figure 9. Figure 9A shows the source distribution used to create the projections. Figure 9B shows the
slice reconstructed using FBP from ideal projections. Notice that an extremely good estimate of the
original source distribution is obtained. Figure 9C shows the FBP reconstruction of the slice from
projections that have been degraded by the presence of attenuation, scatter, and system spatial resolution.
Notice the significant distortion in the intensities and shapes of the structures when the sources of
degradation are included in creating the projections, but are not included in the reconstruction process. For
example, due to attenuation and the partial-volume effect (as detailed in section IV), the heart wall is
significantly reduced in apparent intensity compared to the soft tissues. Also, the soft tissue close to the
body surface is now enhanced compared to that of the deeper tissues. Finally, note the significant
distortion of the areas of low activity concentration around the heart and liver, and the buildup of counts
outside the body in the sternal notch region on the anterior surface. The goal of the compensation
strategies discussed in this chapter is to return the slice estimate of Figure 9C to that of Figure 9A;
however, the compensation strategies are limited in their ability to perform such a transformation by the
presence of noise. The complication of the presence of noise is illustrated in Figure 9D, which shows the
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FBP reconstruction of the degraded projections to which has been added Poisson noise typical of that in
perfusion imaging.

The cause of the distortions in Figure 9C is the inconsistency of the projection data with the model
of imaging used in reconstruction. The model of the imaging system used with FBP reconstruction was
that of an ideal imaging system (i.e., one with a PSF equal to a δ-function whose integral is a constant
independent of projection angle, as illustrated in Figure 2). The actual PSF’s for SPECT imaging vary in
shape and magnitude with location in the slice and projection angle, as illustrated in Figure 8. Without
compensation for such variation prior to reconstruction, or accounting for the variation as part of the
reconstruction algorithm, the reconstructed PSF is anisotropic with long positive and negative tails [15].
The reason for this is as follows. Use of the “ramp” filter in FBP to compensate for the blurring of
backprojection results in negative values in the projections. These negative values cancel out the wrong
guesses as to where the counts are located when backprojected. If the acquired PSF’s are of different size
and shape, then the cancellation is not exact, and a distorted reconstructed PSF results [16]. The low-
magnitude tails of the reconstructed PSF’s from hot structures in images can add up, causing changes in
the apparent count level of nearby structures. Clinically, this can result in decreased apparent localization
in the inferior wall of the heart in perfusion images with significant hepatic activity [17], the loss of the
ability to visualize bone structures in bone scans at the level of significant bladder activity [18, 19], and
other artifacts. The distortion is not limited to FBP, but occurs with iterative reconstruction if the imaging
model is inconsistent with the actual data collection [16, 20].

II. Non-uniform Attenuation Compensation

A. Estimation of patient-specific attenuation maps

The determination of an accurate, patient-specific attenuation map is fundamental to performing
attenuation compensation (AC). This fact has been appreciated for years [21]; however, it is the recent
commercial interest in providing estimates of attenuation maps which will likely bring the benefits of AC
into wide-spread clinical use. Three strategies have been employed for obtaining attenuation maps for use
with AC: 1) import and register maps from another modality; 2) obtain transmission data for estimating
the attenuation maps with the gamma camera employed for emission imaging; and 3) estimate the
attenuation map from solely the emission data. A previous review of this topic can be consulted for more
details than are presented in this chapter [22].

High-resolution images from another modality can be imported and registered with the patient’s
SPECT data [23, 24]. Of course the task is made a lot simpler by acquiring the high-resolution slices
while the patient is on the same imaging table [25]. The voxel values in the high-resolution images require
scaling to the appropriate attenuation coefficients for the energy of the emission photon [26]. Besides their
use for attenuation maps, these images can also provide anatomical contexts for the emission
distributions, and compensation for the partial-volume effect [27]. Currently one imaging company is
marketing a combined SPECT and CT system that share a single imaging table. The image noise in the
attenuation maps from such a system is very low, and the in plane resolution is very high compared to the
SPECT slices. Such systems will most likely perform sequential emission and transmission imaging;
however, the CT imaging time can be quite short if a high-end CT system is coupled with the SPECT
system. One potential drawback to such a system is the cost, especially if it is desirable to use the CT
system for diagnostic imaging as well as providing AC for the SPECT system.
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 The basic transmission source and camera collimator configurations are summarized in Figure 10
for a 50-cm field-of-view (FOV) single headed SPECT system imaging a 50-cm diameter patient. The
extent of truncation illustrated would of course vary with the camera FOV and the patient diameter. With
each of these configurations, the projections of the transmission source with the patient and table present
in the FOV of the camera are combined with the transmission projections with the patient and table absent
(blank scan) and input to reconstruction algorithms which solve Equation 3 for the µ’s (attenuation map).

The first configuration, illustrated in Figure 10A, is that of a sheet transmission source opposite a
parallel-hole collimator on the camera head.  This configuration was investigated for a number of years for
use with SPECT systems [28-30]. Its major advantage was that it provided a transmission source which
fully irradiated the camera head opposed to it, and needed no motion of the source beyond that provided
by the rotation of the gantry. The disadvantages of this configuration were that it was cumbersome to
work with and required source collimation in order that “good geometry” attenuation coefficients were
estimated [31].

The second configuration, which is shown in Figure 10B, is that of the multiple line-source array
[32]. With this configuration, the transmission flux comes from a series of collimated line sources aligned
parallel to the axis of rotation of the camera. The spacing and activity of the line sources is tailored to
provide a greater flux near the center of the FOV, where the attenuation from the patient is greater. As the
line sources decay, two new line sources are inserted into the center of the array. The rest of the lines are
moved outward one position, and the weakest pair removed. The transmission profiles result from the
overlapping irradiation of the individual lines, which varies with the distance of the source from the
detector. The multiple line-source array provides full irradiation across the FOV of the parallel-hole
collimator employed for emission imaging without the need for translation of the source, as did use of a
sheet source. Supporting, shielding, and collimating the source array is not quite as cumbersome as it was
for the sheet source, but is still more so than for a single line or point source. A major advantage of the
configuration is that no scanning motion of the sources is required. A major disadvantage of this system is
the amount of cross-talk between the emission and transmission photons. Due to Compton scattering
within the patient, scatter from whichever is higher in energy will contaminate the energy window for the
other.

As shown in Figure 10C, the sheet or multiple-line transmission source can be replaced by a
scanning-line source [33]. The camera head opposed to the line source is electronically windowed to store
only the events detected in a narrow region opposed to the line source in the transmission image. The
electronic window moves in synchrony with the line thereby allowing transmission imaging across the
entire FOV. The result is a significant reduction in the amount of scattered transmission radiation imaged
in the transmission energy window. The transmission counts are concentrated in this moving spatial
window thereby increasing their relative contribution compared to the emission events. Similarly using the
portion of the FOV outside the transmission electronic window for emission imaging results in a
significant reduction in the amount of cross-talk between transmission and emission imaging. Despite the
significant reduction is cross-talk afforded by the scanning-line source methodology, compensation is still
required for the residual cross-talk. The scanning-line source does have the disadvantage of requiring
synchronized mechanical motion of the source with the electronic windowing employed to accept the
transmission photons. The result can be an irradiation of the opposing head that changes with gantry
angle, or erratically with time. Also, communication and synchronization between the camera and moving
the line source can be problematic. However, the advantages of this method compared to its disadvantages
are such that it is currently the dominant configuration offered commercially.
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The need for lateral motion of the transmission source can be avoided, without the need for a
cumbersome sheet or multiple-line source, if convergent collimation is employed. Figure 10D depicts the
use of a fan-beam collimator with a line transmission source at its focal distance [34-36]. This
configuration has the advantages that: 1) near “good geometry” attenuation coefficients are measured
since the collimator acts as an anti-scatter grid, 2) convergent collimators provide a better spatial
resolution sensitivity combination for small structures such as the heart than achieved with parallel
collimation for emission imaging, and 3) only line or point sources need to be handled, shielded, or
mounted on the system. The potential disadvantages of this configuration are: 1) an increased truncation
of the FOV over that of parallel collimation on the same camera head, 2) the lack of electronic windowing
to assist in correction of cross contamination between emission and transmission imaging, 3) the need to
keep the source at the convergence location of the collimation, and 4) the emission images are acquired by
fan-beam collimators. The latter distorts the projection images that physicians employ to look for breast
shadows and lung uptake. Also, use of fan-beam collimators raises the possibility that both the
transmission and emission projections of the heart may be truncated at some projection angles. One way
around this on multi-headed SPECT systems is to do emission imaging with parallel-hole collimators on
the heads that are not involved in transmission imaging [37]. The transmission source can be mounted on
the system under motorized computer control to move the source radially with motion on the opposed
camera head, thereby allowing body contouring acquisitions and overcoming this difficulty. With
sequential transmission and emission imaging there is no need to correct the emission images for the
presence of the transmission source. Also, images acquired in the transmission window during emission
imaging can be used to estimate the contamination of the transmission images with transmission source
present by the emission photons. One disadvantage of sequential scanning is an increase in the potential
for patient motion that can result in misalignment between the emission and transmission images, and
introduces artifacts [38]. Methods have been developed to estimate the contamination of emission and
transmission images by the other source of radiation when simultaneous emission and transmission
imaging is employed [34-36, 39, 40]. Thus, the influence of cross-contamination can be greatly reduced.

The major remaining potential problem with using convergent collimation for estimation of
attenuation maps is that of truncation. Truncation of attenuation profiles results in the estimated
attenuation maps exhibiting the "cupping artifact". This artifact is the result of the pile up of information
from the truncated region near its edge when the reconstruction is limited to reconstructing only the region
within the FOV at every angle. This region is called the fully sampled region (FSR). If the reconstruction
is not limited to the FSR, then the "cupping artifact" is not present, but the area outside the FSR is
distorted and inside the FSR is slightly reduced in value. Significant improvement can be obtained by
constraining the reconstruction to the actual area of the attenuator [37]. Since the goal of transmission
imaging is to estimate attenuation maps for the correction of attenuation in the emission images, the
important question is not whether the maps are distorted by truncation, but rather whether the correction
of attenuation is degraded by truncation. It has been reported that even though the attenuation map is
significantly distorted outside the FSR, the attenuation sums (exponentials of the sums of the attenuation
coefficients times path lengths) for locations in the FSR are estimated fairly accurately with iterative
reconstruction [34, 36]. This is due to the iterative reconstruction algorithms employed in transmission
reconstruction forcing the total attenuation across the maps to be consistent with the measured attenuation
profiles, and to all locations being viewed at least part of the time. Thus, for structures such as the heart,
which are within the FSR, a reasonably accurate AC can be obtained. Recently, it has been shown that
truncation may have an impact on the detection of cardiac lesions [41]. Since both emission and
transmission data were truncated in that work, it is unclear whether the decrease in the area under the
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ROC curve was caused primarily by one, by the other, or by a combination of both types of truncation.
There is no question, however, that truncation poses a serious problem for the AC of structures that are
outside of the FOV at some angles.

Truncation can be eliminated, or at least dramatically reduced, by imaging with an asymmetric as
opposed to a symmetric fan-beam collimator [42-45]. As shown in Figure 10E, use of asymmetric
collimation results in one side of the patient being truncated, instead of both. By rotating the collimator
3600 around the patient, conjugate views will fill in the region truncated. If a point source with electronic
collimator is employed instead of a line source, then a significant improvement in cross-talk can be
obtained [46]. Other benefits are that point sources cost less than line sources, and are easier to shield and
collimate. The problem remains, however, that converging collimators acquire the emission profiles. This
difficulty can be overcome, as illustrated in Figure 10F, by using photons from a medium-energy
scanning-point source to create an asymmetric fan-beam transmission projection through a parallel-hole
collimator by penetrating the septa of the collimator [47]. With this strategy, transmission imaging is
performed sequentially after emission imaging to avoid transmission photons from contaminating the
emission data. This lengthens the period of time that the patient must remain motionless on the imaging
table. Another problem with this method of transmission imaging is that it really is only useful for
imaging with low-energy parallel-hole collimators. For imaging medium-energy and high-energy photon
emitters, an asymmetric fan-beam collimator would need to be employed.

Alternatives to transmission imaging for the estimation of attenuation maps do exist. One method
used with cardiac perfusion imaging is to inject Tc-99m macroaggregated albumin (MAA) after the
delayed images and then reimage the patient. The lung region is obtained by segmentation of the MAA
localization, and the body outline is obtained either by an external wrap soaked in Tc-99m [48], or by
segmentation of scatter-window images [49]. Assigning attenuation coefficients to the soft tissue and lung
regions then forms the attenuation map. This method has the advantage of requiring no modification of
the SPECT system to perform transmission imaging; however, a second pharmaceutical must be
administered, and additional imaging must be performed. Another method of estimating attenuation maps
without the use of transmission imaging is to segment the body and lung regions from scatter and
photopeak energy window emission images of the imaging agent itself. This would not require any
significant alteration or addition to present SPECT systems and imaging protocols beyond the
simultaneous acquisition of a scatter window. Application of this method in patient studies has shown that
approximate segmentation of the lung can be achieved interactively in many, but not all, patients [50].
This lack of robustness has limited its clinical use. The emission data does contain information regarding
photon attenuation, and efforts have been made at extracting information on the attenuation coefficients
directly from the emission data. One approach for doing so is to iteratively solve for both the emission and
attenuation maps from the emission data [51, 52]. Another approach is to use the consistency conditions
of the attenuated Radon transform to assist in defining an attenuation map that would affect the emission
projections in the same way as the true attenuation distribution [53].

B. Compensation methods for correction of non-uniform attenuation

Not only has the ability to estimate attenuation maps improved greatly during the last decade, but
so has the ability to perform AC once the attenuation maps are known. In part this is due to the
tremendous changes in computing power, making computations practical which could only be performed
as research exercises ten years ago. It is also due to an improvement in the algorithms used for correction
and the efficiency of their implementations. An example is the development of ordered-subset or block-
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iterative algorithms for use with maximum-likelihood reconstruction [54, 55]. Numerous AC algorithms
have been proposed and investigated. For example, considerable effort has been directed towards the
direct analytical solution for attenuation as part of reconstruction. Solutions to the Exponential Radon
transform (uniform attenuation within a convex attenuator) have been derived [56-60]. These have been
extended to correction of a convex region of uniform attenuation within a non-uniform attenuator [61-63].
Recently the Attenuated Radon transform, in the general case of non-uniform attenuation, has been
analytically solved [64]. Any comprehensive review of AC algorithms would require a chapter dedicated
solely to this task. Therefore, we will discuss at length only the two most commonly used AC algorithms:
the Chang algorithm [65] used with FBP, and use of AC with the maximum-likelihood expectation-
maximization reconstruction algorithm (MLEM) [67, 68].  The reader is referred to other reviews for
more details and other algorithms [69-71].

To compare the algorithms we will make use of the 3D mathematical cardiac-torso (MCAT)
phantom developed at the University of North Carolina at Chapel Hill [1]. Source and attenuation maps
from the MCAT phantom were input to the SIMIND Monte Carlo simulation of gamma camera imaging
[72]. SIMIND formed 128 x 128 pixel images for 120 angles about the source maps as imaged by a low-
energy high-resolution parallel-hole collimator imaging Tc-99m. The primary and scatter components
were recorded separately. This allowed the study of scatter-free images, that is images upon which
"perfect" scatter compensation (SC) had been performed.

A simulation was made in which only the distance-dependent spatial resolution was simulated.
This served as an example of "perfect" AC. Figure 11 shows the transverse slices and polar maps for 1800

and 3600 FBP reconstructions of this simulation. The slices were filtered pre-reconstruction with a 2D
Butterworth filter of order 5.0 and cutoff frequency of 0.4 cycles/cm (0.125 of sampling frequency), as
recommended for Tc-99m sestamibi rest images [73]. Notice the absence of the artifacts outside the heart
in the transverse slices. Also, notice the uniformity of counts in the polar map aside from the band of
increased counts due to the joining of left ventricle (LV) and right ventricle (RV), and the decrease in
counts at the apex. These deviations from uniformity illustrate the impact of the partial-volume effect on
the uniformity of cardiac wall counts. Where the wall is thicker, as with the joining of the RV and LV, the
apparent counts will be higher. Where the wall is thinner, as with apical thinning (which was included in
the simulated LV), the apparent counts will be lower. Thus, even with perfect AC and SC, one would not
expect the wall of the LV to be uniform. Note also that there is slightly better uniformity of counts in the
3600 reconstruction than the 1800 reconstruction due to less variation in spatial resolution.

Figure 12 shows a transverse slice through the heart and "Bull's-eye" polar map for 1800 and 3600

FBP reconstructions of the slices with no AC when attenuation was included in the simulation. Again, 2D
Butterworth filtering of order 5.0 and a cutoff frequency of 0.4 cycles/cm were employed. Notice the
artifacts outside the heart due to the reconstruction of inconsistent projections, and the variation in
intensity of the LV walls. The polar maps in this figure illustrate the fall-off in counts from the apex to the
base due to the increase in attenuation with depth into the body.  A decrease in the anterior wall due to the
breast attenuation for 1800 reconstruction is observed. Notice the slightly better uniformity of the 3600

reconstruction due to the reduction in the impact of projection inconsistencies by combining opposing
views. The goal of AC is to return the reconstructed distributions of Figure 12 to those of Figure 11.

The best known and widest employed of methods that perform AC with FBP is due to Chang [65].
The multiplicative or zeroth-order Chang method is a post-reconstruction correction method which seeks
to compensate for attenuation by multiplying each point in the body by the reciprocal of the TF, averaged
over acquisition angles, from the point to the edge of the body. That is, one calculates the correction factor
(C(x', y')) for each (x', y') location in the slice as:
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where M is the number of projection angles θi, TF is calculated as per Equation 3, and Equation 1 is used
to convert x' and y' into t' and s' for each θi. The correction is approximate because the TF's are not
separable from the activity when summing over angle [74]. An iterative correction can be obtained in the
following way. The zeroth-order corrected slices are projected, mathematically simulating the process of
imaging, and the resulting estimated profiles subtracted from the actual emission data. Error slices are
reconstructed from the differences using FBP. After correction of the error slices for attenuation in the
same manner as the zeroth-order correction, the error slices are added to the zeroth-order estimate of the
slices to obtain the first-order estimate. Typically only the first-order correction is performed, but the
process can be repeated any number of times to obtain higher-order estimates. One problem with doing
this is that the method does not converge (i.e., reaches a definite solution and then not changing with
further iteration). Instead, the higher-order estimates are characterized by elevated noise [75]. Figure 13
shows MCAT transverse slices and polar maps for zeroth, first, and fifth-order Chang using the true non-
uniform attenuation map to form the correction factors. Notice the considerable improvement of the poor
correction of zeroth-order Chang after a single iteration. With five iterations, notice the increased noise
evident in the slice and polar map.

As detailed in a previous chapter statistically based reconstruction algorithms start with a model
for the noise in the emission data and then derive an estimate of the source distribution based on some
statistical criterion.  In maximum-likelihood expectation-maximization (MLEM), the noise is modeled as
Poisson, and the criterion is to determine the source distribution that most likely gave the emission data
using the expectation-maximization (EM) algorithm [67, 68]. The advantages of MLEM which have lead
to its popularity include: 1) it has a good theoretical base; 2) it converges; 3) it readily lends itself to the
incorporation of the physics of imaging such as attenuation; and 4) it compensates for non-uniform
attenuation with a high degree of accuracy [76].
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The MLEM algorithm is given in equation 7, and works in the following way. First, as represented
in the denominator on the right side of equation 7, projections are made by summing the current (old)
estimate of the voxel counts (fold) for each slice voxel k which contributes to projection pixel i. The initial
estimate is typically a uniform count in each voxel. The weights used when summing the voxel counts
(hik) are the probabilities that a photon emitted in voxel k contributes to projection pixel i. These
probabilities form a matrix (H) called the transition matrix. H has the number of voxels as the number of
columns, and the number of pixels in the projections as the number of rows. Thus for reconstruction of a
64 x 64 x 64 source distribution being acquired into 64 x 64 projections at 64 angles, H would be a 643 x
643 matrix. Each column in H is the unnormalized PSF for each acquisition angle stacked one on top of
another for the associated voxel. If we form a column vector out of the voxel counts, then projection is

(7)
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given by the matrix multiplication of H times this vector with the result being a column vector made up of
the counts in each projection pixel. It is in this process of projecting (mathematically emulating imaging)
that one includes the physics of imaging. For example, to include attenuation each hik would be formed as
the product of the TF as calculated by equation 3 times the fractional contribution of voxel k to pixel i
based on the geometry used to model imaging. In reality because of size one would not typically calculate
and save the entire H matrix for 3D imaging. Instead, the needed terms are calculated “on-the-fly” by a
procedure such as the following. Projecting along rows or columns is computationally inexpensive.
Arbitrary projection angles can be placed in this orientation by appropriately rotating the estimated
emission voxel slices and attenuation maps [77]. Given an aligned attenuation map for an estimate of an
emission slice, one could include attenuation by starting with the voxel on the side opposite the projection
being created and multiplying its value by the TF for passing through one-half the voxel distance of an
attenuator of the given attenuation coefficient. The value of one-half the pixel dimension is usually used
as an approximation for the self-attenuation of the activity in the voxel. One would then move to the next
voxel along the direction of projection and add its value after correction for self attenuation to the current
projection sum attenuated by passing through the entire thickness of the voxel. One would then continue
this process until having passed through all voxels along the path of projection. The result of the
projection operation is an estimate of the counts in pixel i based on the current estimate of the voxel
counts, and the model of imaging being used in the transition matrix. As shown by the division on of the
right side of equation 7, this estimate is then divided into the actual number of counts acquired in each
pixel i. The ratio of the two indicates if the voxels along the given path of projection are too large (ratio
below one), just right (ratio of one), or too small (ratio larger than one). These ratios are then
backprojected as indicated by the summing over i in equation 7, to create an update for the estimate of
voxel j. This update is the result of letting each ratio vote with a weight of hij on how the current estimate
of voxel j should be altered. Note that the summing is now over the first subscript as opposed to the
second as before. Thus, in terms of matrix algebra, we would be multiplying by the transpose of H in the
backprojection operation. The update is multiplied times the current voxel estimate to obtain the updated
estimate after normalization by dividing by the backprojection of 1.0’s (division just to the right of the
equal sign in equation 7).

The ordered-subset version of the MLEM algorithm (OSEM) [54] has accelerated reconstruction
to the extent that clinically acceptable reconstruction times are now possible. With OSEM, one divides the
projections into disjoint subsets. One then updates the estimate of the source distribution using just the
projections within the given subset. A single iteration is complete after updating has occurred for all the
subsets. The success of OSEM is such that it is now being used routinely for selected applications instead
of FBP.

Figure 14 shows a comparison of the transverse slices and polar maps in the first column for 30
iterations of MLEM using the 1800 of data from RAO to LPO, in the middle column for 30 iterations of
MLEM using all 3600 data, and at the right 100 iterations using all 3600 data. All the reconstructions were
3D post-reconstruction filtered with a Butterworth filter with order of 5.0 and cut-off frequency of 0.64
cycles/cm. This cut-off is higher than the 0.4 cycles/cm used with all the FBP reconstructions. Notice that
all three yield excellent reconstructions; however, 1800 reconstruction is noisier (especially in the-low
count areas behind the heart) and the uniformity of the polar map is slightly inferior compared to the 3600

reconstructions. At 100 iterations, the noise has slightly increased, somewhat better resolution is apparent
in the transverse slice, and the polar map is a little less uniform than at 30 iterations probably, due to the
better resolution.
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C. Impact of non-uniform attenuation compensation on image quality

AC is required for accurate absolute quantitation of activity [78]. In addition to its altering
quantitation, attenuation is a major cause of artifacts in SPECT slices as discussed earlier. Thus, it is of
interest to determine if AC can improve diagnostic accuracy in SPECT imaging. An area that has received
a lot of attention as a candidate for the application of AC is cardiac perfusion imaging. Even though the
need for AC from a physics point of view seems clear, the number of clinical studies reporting negative or
equivocal results from the application of AC in perfusion imaging has lead to skepticism concerning its
ultimate utility [79, 80]. Two papers do show the potential for improvement in diagnostic accuracy with
AC. LaCroix et al. [81] conducted a ROC investigation using the MCAT phantom. They observed an
improvement in defect detection when using AC with MLEM as opposed to FBP without AC, particularly
for simulated patients with large breasts or a raised diaphragm.  Ficaro, et al. [82] conducted a ROC
investigation of AC in 60 patients who had undergone angiography. When coronary artery disease was
defined as greater than 50 % stenoses in the luminal diameter, the area under the ROC curve increased
from 0.734 with no AC to 0.932 with AC. Thus there is reason to believe that ultimately AC will be
determined to make a significant contribution to improving the diagnostic accuracy of perfusion imaging.
Recently a position statement reviewing the literature and summarizing the current view of AC in cardiac
imaging has been published [83].

The question of the impact of attenuation and its compensation on tumor-detection accuracy is of
significant current clinical interest [84].  Both positive [85] and negative [86] results have been reported
as to the benefit of AC for F-18 labeled 2-fluror-2-deoxy-D-glucose (FDG). Thus, there does not appear to
be a definitive answer yet as to the role of AC in tumor detection for PET FDG imaging.

Using simulated Ga-67 citrate SPECT imaging of the thorax for lymphoma, we [87] performed a
localization receiver operating characteristics (LROC) comparison of: 1) FBP reconstruction with no AC;
2) FBP reconstruction with multiplicative Chang AC; 3) FBP with one iteration of iterative Chang AC; 4)
one iteration of OSEM with no AC; and 5) one iteration of OSEM with AC.  The “free” parameters for
each of the five strategies were optimized using preliminary LROC studies. To compare the strategies,
200 lesion sites were randomly selected from a mask of potential lymphoma locations. 100 of these were
used in observer training and strategy optimization, and 100 were used in data collection with 5 physician
observers. In this study 3 different lesion contrasts were investigated; each image set contained an even
distribution of lesion contrasts. We determined that AC does not significantly alter detection accuracy
with FBP reconstruction. However, there was a significant improvement in detection accuracy when AC
was included in OSEM (aggregate areas under the LROC curves (AL) of 0.43, 0.39, 0.41, 0.41, and 0.58
for FBP no AC, FBP multiplicative Chang, FBP iterative Chang, OSEM no AC, and OSEM with AC,
respectively). There were statistically significant differences between OSEM with AC and the other 4
reconstruction strategies for the aggregate, and also for two lower lesion contrasts. Numerically, OSEM
with AC resulted in a larger AL than did the other 4 strategies at the highest contrast considered, but the
difference was no longer statistically significant. We believe this is an indication that once a lesion is of
high enough contrast, OSEM with AC no longer provides a significant improvement in performance
because there is little room for improvement as many of the lesions are obvious to begin with. We
hypothesize that our positive finding for OSEM with AC is due in part to the use of the LROC
methodology with no repetition of lesion locations in the comparison. This prevented the observers from
memorizing the impact of attenuation artifacts on lesion appearance during training. Patient and lesion-
site variability would also limit the physician’s ability to do this clinically. Thus we believe that AC may
improve tumor detection accuracy in SPECT imaging, especially when the tumors are in low-count
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regions in slices which also contain significant concentrations of the imaging agent. AC would then help
clean up attenuation artifacts, which spread from the high-count regions and interfere with detection.

III. Scatter Compensation

The imaging of scattered photons degrades contrast and signal-to-noise ratio (SNR), and must be
accounted for if attenuation compensation (AC) is to be accurate [88, 89].  The methods for estimating
attenuation maps available commercially try to estimate “good geometry” attenuation coefficients. In the
past, the use of an effective (reduced) attenuation coefficient approximately accounted for the presence of
scattered as well as primary photons in the projections when performing AC. The coefficient was typically
selected to under correct the primary content of the emission projections so that a uniform reconstruction
of a tub with a uniform concentration of activity resulted when projections with both primary and scatter
were reconstructed [90]. The use of an effective attenuation coefficient to compensate for the presence of
scatter is only, at best, a very approximate solution since the scatter distribution that is detected depends
not only on the attenuator but also on the source distribution. Patient-activity distributions do not
generally approximate a tub uniformly filled with activity. Thus instead of using an effective attenuation
coefficient it is better to perform both SC and AC in conjunction since they are a team.

The best way to reduce the effects of scatter would be to improve the energy resolution of the
imaging systems by using an alternative to the NaI(Tl) scintillator so that few scattered photons are
acquired [5]. Figure 15 shows an energy spectrum obtained using the SIMIND Monte Carlo simulation
package [72] for an LAO view of the 3D MCAT with the source distribution that of a Tc-99m sestamibi
perfusion study as illustrated in Figure 9. Notice the finite width Gaussian response for the primary
photons due to the finite energy resolution of the system, and the presence of scattered photons under this
peak. The energy resolution (%FWHM) for the NaI(Tl) camera in this simulation was set at 10%. Figure
16 shows a plot of how the scatter fraction varies for %FWHM’s of 1% to 10% when a symmetric
window of width twice that of the %FWHM is employed in imaging. Note that both classical and
Compton scattering were included in the simulation. From the plot it is evident that even with 1% energy
resolution there would still be a small amount of scatter imaged. Besides improving energy resolution to
have less scatter within the imaging window, one can alter the placement of the energy window over the
photopeak so that it covers less of the region below the peak itself [91]. This reduces the amount of scatter
collected, but also reduces the number of primary photons.

A number of SC algorithms have been proposed for SPECT systems that employ NaI(Tl)
detectors. Generally, the methods of SC can be divided into two different categories [92, 93]. The first
category, which we will call scatter estimation, consists of those methods that estimate the scatter
contributions to the projections based on the acquired emission data. The data used may be information
from the energy spectrum or a combination of the photopeak data and an approximation of scatter PSF’s.
The scatter estimate can be used for SC before, during, or after reconstruction. The second category
consists of those methods that model the scatter PSF’s during the reconstruction process. The second
approach will be called reconstruction-based scatter compensation (RBSC) herein.

A. Scatter estimation methods

The difficulty in scatter estimation is illustrated in Figure 17 which shows that the acquired
projection data is the result of the contributions from primary photons, scattered photons, and noise. In
scatter estimation one tries to obtain an accurate estimate of the scatter distribution avoiding any biases.
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However, even if this is obtained, then its removal from the acquired projection would still leave the noise
inherent in the detection of the scattered photons behind. Thus scatter estimation methods typically reduce
the bias in the projections due to scatter, but enhance the noise level.

Energy-distribution-based methods seek to estimate the amount of scatter in a photopeak-energy-
window pixel by using the variation of counts acquired, in the same pixel, in one or more energy
windows. The pixel-based nature of this method allows for the generation of a scatter estimate for each
pixel in the photopeak-window data. The Compton window subtraction method [94] is the classic
example of this strategy. In this method, a second energy window placed below the photopeak window is
used to record a projection consisting of scattered photons. This projection is multiplied by a scaling
factor k, and is then subtracted from the acquired projection to yield a scatter-corrected projection. This
method assumes that the spatial distribution of the scatter within the Compton scatter window is the same
as that within the photopeak window, and that once it is determined from a calibration study, a single
scaling factor holds true for all applications on a given system. That the distribution of scatter in the two
windows differs can be seen by noting that the average angle of scattering (and hence the degree of
blurring) changes with energy. Also, the value of k varies depending on radionuclide, energy-window
definition, pharmaceutical distribution, region of the body and other factors [95].

 Making the scatter window smaller and placing it just below the photopeak window can minimize
the difference in the distribution of scatter between it and the photopeak window. With this arrangement,
one obtains the two-energy window variant of the triple-energy window (TEW) SC method [96]. The two-
energy window variant is useful when downscatter from a higher energy photon is not present as in the
case of imaging solely Tc-99m. In this method, the scatter in a pixel is estimated as the area under a
triangle whose height is the average count per keV in the window below the photopeak window, and
whose base is the width of the photopeak window in keV. When downscatter is present, a third small
window is added above the photopeak as illustrated in Figure 18 [97]. With the addition of this third
window, scatter is estimated as the area under the trapezoid formed by the heights of the counts per keV in
each of the two narrow windows on either side of the photopeak, and a base with the width of the
photopeak window. By making the windows smaller, one estimates the scatter distribution from regions of
the energy spectrum closer to the photopeak window thereby improving the correspondence of the
scattered-photon energies with those in the photopeak window. The price paid for this is that the
estimation is based on fewer counts and therefore is noisier. Thus heavy low-pass filtering of the scatter
estimate is required to reduce the noise in the estimate [98].

Energy-distribution based methods that use a limited number of energy windows to estimate the
primary counts do not completely compensate for scatter. This is in part due to their use of simple
geometric shapes to estimate the scatter within the photopeak window. The main advantages of such
methods are their speed and simplicity for clinical use. Performance can be improved through the use of
more windows, which would allow a greater degree of freedom when estimating the scatter within the
photopeak window.  A number of investigators have developed multi-window methods [99-101]. The
problem with methods that require more than a few energy windows is that the required number of
windows is not available on many SPECT systems. Also, dividing the spectrum up into a large number of
windows decreases the detected counts in each window, thus increasing the noise in the windows.

Another subclass of scatter-estimation methods is the spatial-distribution-based methods. These
methods seek to estimate the scatter contamination of the projections on the basis of the acquired
photopeak window data, which serves as an estimate of the source distribution, and a model of the
blurring of the source into the scatter distribution. The latter is typically an approximation to the scatter
PSF, an illustration of which for one location in the 3D MCAT phantom is shown in Figure 19. Beck and
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colleagues [102] conducted an early analysis of the contribution of scatter to the response observed for
point and line sources.

An example of a spatial-distribution method for SC in SPECT is the convolution-subtraction
method, which modeled the scatter response as decreasing exponentially from its center maximum value
[103]. The center value and slope of the exponential were obtained from measurements made with a finite
length line source. This function was convolved with the acquired projection data, and the result was used
as an estimate of the scatter distribution in the projection. The estimated distribution was subtracted from
the original data to yield scatter corrected projection data. One problem with this method was it assumed
that the scatter model did not change with location. To overcome this problem, Monte Carlo methods
were used to generate a set of scatter responses that were, in turn, used to interpolate the scatter response
at a given location [104]. Both of these approaches used scatter line-spread functions (LSF’s) instead of
PSF’s. That is, the source modeled was a finite length line instead of a point. Convolution was performed
one-dimensionally in the plane of the slice to be reconstructed. Scatter originating outside the plane was
assumed to be included as a result of using the finite length line.

Msaki, et al., [105] modeled the two-dimensional (2D) scatter PSF and performed 2D convolution
to account for across-plane scatter as well as in-plane scatter. This method was further refined by adapting
the scatter PSF for the individual patient using photon transmission through an attenuation map [106,
107]. Convolution-subtraction methods offer a fast and reasonably accurate way of correcting for scatter.
Their main disadvantages are: the subtraction of the scatter estimate elevates noise in the primary
estimate, the accuracy with which the scatter PSF is modeled is often poor, and the estimation of scatter
from sources not within the field of view of the camera poses a problem.

B. Reconstruction-based scatter compensation (RBSC) methods

RBSC starts with the estimated source and attenuation distributions and calculates the contribution
of scatter to the projections by using the underlying principles of scattering interactions. With RBSC
methods compensation is achieved, in effect, by mapping scattered photons back to their point of origin
instead of trying to determine a separate estimate of the scatter contribution to the projections [93]. All of
the photons are used in RBSC, and it has been argued that there should be less noise increase than with
the other category of compensation [92,93]. One disadvantage, which RBSC shares with the convolution-
based subtraction method discussed in the previous section, is that RBSC does not allow for the direct
calculation of scatter from sources that are outside of the reconstructed field of view.

The accuracy of RBSC however depends on the accuracy of modeling scatter, and accurate
modeling of scatter is computation intensive. As with AC, the estimation of accurate patient-specific
attenuation maps is essential since they are used to form the patient-specific scatter PSF’s. It is also vital
that inter-slice (3D) as well as intra-slice (2D) SC be performed [108-110]. Thus, for reconstruction of a
64 x 64 x 64 source distribution imaged at 64 angles one would need to form a transition matrix
consisting of 644 PSF’s each consisting of 64 x 64 terms, or 64.7 x 109 terms in total. Since each patient
presents a unique attenuation distribution, the transition matrix used in reconstruction ideally should be
formed for the individual patient. Such a transition matrix could be obtained by manufacturing an
attenuation distribution which matches the patient’s, and in which a point source can be positioned
independently in each voxel to allow measurement of the PSF’s. However, the point source imaging time
is prohibitive for routine clinical use, and the storage in memory and on disk of such a matrix represents a
significant problem even by today’s hardware standards. Thus, the terms in the matrix are normally
calculated as needed without saving them, and with various levels of approximation. Also, the
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contribution of scatter to the projections may be calculated directly without the actual formation of the
PSF’s as in the case of Monte Carlo simulation.

For the case of a uniform, convex attenuator a parallel/serial model of the system PSF can be used
to separate the distance-dependent camera response from the depth-dependent scatter response [13, 14,
111]. In this approach a distance-dependent Gaussian is used to model the system response to the primary
photons. A second Gaussian is used to model the depth-dependent scatter response originating from the
attenuator. This scatter response is convolved with the appropriate system response for the distance from
the collimator since the two are in series, and summed after scaling with the response of the primary
photons, since primary and scatter are modeled as being imaged in parallel. The scaling is based on the
scatter-to-primary ratio (scatter fraction) for the given depth in the attenuator. In this way PSF’s can be
quickly formed from the storage of just the regression models of the variation of the FWHM of the
primary photons with distance, the scattered photons with depth, and the scatter fraction with depth.

The difficulty with the parallel/serial approach as described above is that it accounted for only
variations in the depth of the source and not variations in the attenuator to either side of the path of the
primary photons to the camera. This approach was refined by including parameterization of the scatter
response as a function of the shape of the uniform attenuator relative to the position of the point source
[112, 113]. The result were system PSF’s which matched measured PSF’s in uniform, convex attenuators
exceedingly well, but were not suitable for use with non-uniform attenuation. An attempt was made to
allow these slab derived scatter responses to account for non-uniform attenuation, but the estimated
responses did not achieve the same level of agreement as with the case of uniform attenuation [114, 115].

An alternative approach is to calculate the scatter response by integration of the Klein-Nishina
formula for Compton scattering using the patient’s attenuation maps for the attenuator distribution [116,
117]. By calculating the PSF’s analytically as opposed to stochastically these methods achieve “noise-
free” estimates in a fixed amount of time unlike Monte Carlo simulation methods where noise in the
estimate and calculation time are directly linked. Since the processing time increases dramatically with the
order of the scatter interactions, only first (scattering once before detection) and second (scattering twice
before detection) order scatter are typically included in the calculation. The processing time can also be
reduced by factoring the calculation so that a significant amount of it can be contained in precalculated
camera-dependent look-up tables. These methods result in excellent agreement with experimental and
Monte Carlo PSF’s. For point sources, the computation times are significantly faster than with Monte
Carlo simulation. This advantage over Monte Carlo however, is dependent on the source configuration
and is lost for large, extended source distributions.

Still another approach is based on the calculation of an effective scatter source from which the
contribution of scatter to the projections can be estimated using the same projector as for the primary
photons [93, 118-120]. With this approach the estimated primary distribution is blurred into an effective
scatter source distribution. The effective scatter source is formed by taking into account the probability
that a photon emitted at a given location will reach the scattering site, that the photon there undergoes a
scattering interaction which leads to it being detected, and finally that the scattered photon will interact in
the crystal producing an event which is within the energy window used in imaging. The probability of it
not being lost due to attenuation on its way from its last scattering site to the crystal is handled by the
attenuated  projector. By making some approximations in the calculation, excellent agreement with Monte
Carlo simulation can be obtained in reconstruction times feasible for clinical use. For one method, the
approximations made in order to attain this speed include assuming spatial invariance so that the blurring
kernels can be precalculated by Monte Carlo simulation, and truncating a Taylor series expansion of the
exponential describing the probability of attenuation of the photon from the site of emission to the site of
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last scattering [93, 118]. With use of Monte Carlo precalculated kernels, the path of the photon from
emission to last scattering interaction before detection can include scattering interactions up to any order
desired. However, these intermediate scatterings are assumed to occur in a uniform medium. An
alternative method formulates the effective scatter source distribution by incrementally blurring and
attenuating each layer of the patient forward towards the detector [119, 120]. The attenuation coefficients
from the estimated attenuation map are used to do the layer by layer attenuation, thus this method does not
assume a uniform medium when correcting for the attenuation from the site of emission to scattering. The
incremental blurring is however based on a Gaussian approximation to first-order Compton scattering as
calculated from the Klein-Nishina equation. Thus only first-order scatter makes up between 80% and 90%
of the scattering events in the Tc-99m photopeak window are included. The effective scatter source image
is created from the result of the incremental blurring and attenuation through multiplication by the voxel
attenuation coefficient. This effective scatter source image is then incrementally projected taking into
account attenuation and system spatial resolution to produce the estimate of scatter in the projection. In
this final stage the alteration of the attenuation coefficient resulting from the change in the energy of the
photons upon scattering is not accounted for.

One final approach to including scatter in making the projections from the estimate of the source
distribution during reconstruction is Monte Carlo simulation. Monte Carlo simulation was one of the first
methods investigated for this purpose [121,122]. However, until very recently it was too slow to consider
for clinical use. This is no longer the case. Beekman and colleagues have developed a Monte Carlo
approximation which can perform 10 iterations of OSEM using an unmatched projector/backprojector on
a dual processor PC in 10 minutes for a 64 x 64 x 64 reconstruction of a Tc-99m distribution [123].  The
largest portion of the speed increase was obtained by combining stochastic photon transport of the
interactions within the patient with an analytical model of the detection by the camera, a technique they
call convolution-based forced detection [124]. In this method the photon weight and the location of its last
interaction in the patient are stored. Upon completion of the Monte Carlo simulation of each projection
angle, the weights are grouped together according to their distance from the camera, convolved with the
system PSF for that distance, and projected. This process accelerates Monte Carlo simulation by a factor
of about fifty times. One can think of this as going back to the serial model of imaging where Monte Carlo
simulation of interactions within the patient are in series with an analytical model of the camera.

A number of changes in the iterative reconstruction algorithm have been combined with the above
approaches with the result that the inclusion of 3D modeling of scatter during reconstruction is now
possible in clinically feasible time frames. Such algorithmic improvements include the development of
acceleration methods based on the updating of the reconstruction estimate by subsets of the data as
previously discussed under the AC section [54, 55, 125]. The use of an unmatched projector/backprojector
pair greatly speeds reconstruction allowing one to only model scattering in the projection operation [125-
127]. One can also use coarse-grid scatter modeling, and either hold the scatter contribution fixed after a
few iterations or update the scatter projection intermittently during reconstruction [128].

C. Impact of scatter compensation on image quality

There is little question that SC is necessary for accurate activity quantitation [78]. However, the
gains in contrast with SC are typically accompanied by altered noise characteristics so that the benefit for
tumor-detection of SC is uncertain. Using contrast-to-noise plots for simulated Tc-99m images, Beekman
et al. [92] compared ideal scatter rejection (the imaging of solely primary photons), ideal scatter
estimation (provision of the actual scatter content in each projection bin), ideal scatter modeling (perfect
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knowledge of the scatter PSF’s, which is the ideal for the RBSC methods), and no SC.  They determined
that ideal scatter rejection was the best, followed by ideal scatter modeling, and then ideal scatter
estimation. Similar results were reported by Kadrmas et al. [93] for Tl-201 cardiac imaging. They noted
that they had not performed a study of differences in noise correlations between the methods, and that
“such differences would be expected to affect the usefulness of reconstructed images for tasks such as
lesion detection”.

One method of accounting for noise correlation in a study of the impact of SC on image quality is
to perform a human-observer ROC experiment. We have investigated the impact of scatter on “cold” and
“hot” tumor detection for Tc-99m -labeled antibody fragments used for hepatic imaging [129, 130]. Prior
to performing this investigation we hypothesized that scatter could: 1) degrade detection accuracy by
decreasing contrast; 2) improve the accuracy of detection because it adds counts (information), some of
which are in the correct location; or 3) have no impact because these two factors would cancel. The
SIMIND Monte Carlo program [72] was used to create high-count SPECT projections of the abdominal
region as defined by the Zubal phantom [131]. The primary and scattered photons were stored in separate
data files. Similarly, high-count projections of a 2.5-cm diameter spherical “tumor” in each of 3 locations
within the liver were also created via SIMIND. These projections were scaled and added to (“hot” tumors)
or subtracted from (“cold” tumors) the background distribution. Projections were made with solely the
primary photons present. These were used to assess the impact of perfect scatter rejection as might be
approximated by imaging with a detector with extremely good energy resolution. Projections were also
made with both the primary and scattered photons present (standard imaging of Tc-99m), and with 2.5
times the scattered Tc-99m photons present (an approximation to imaging with significantly more
scattered photons as would occur with Ga-67). Multiple noise realizations of the projections with no
tumor present were created. Multiple realizations were also made with tumors at each of three locations.
Energy-window-based SC was applied to the noisy projections that contained scatter. The projections
were 2D low-pass filtered with a Butterworth filter whose parameters matched those used clinically in our
department. The projections were then reconstructed using FBP and multiplicative Chang AC. The
negative values were truncated from the slices, and upper-thresholding to place the average value of a
voxel in the liver at the center of the gray-scale was applied. A signal-known-exactly (SKE) ROC study
was then conducted with 5 observers. The potential location of the tumor was indicated via removable
crosshairs, and a continuous scale was used for the observers' confidence ratings. The LABROC1 program
provided by Dr. Metz was used to estimate, from the ratings for each observer, a binormal ROC curve and
the area under the curve (AZ). Statistical analysis of the AZ’s indicated that only for the case of the “hot”
tumors was there a statistically significant difference in detection accuracy between ideal scatter rejection
(primary-only images), and the slices with the standard amount of scatter (uncorrected low-scatter case).
In either case, the difference in AZ’s was small (0.88 versus 0.86 for cold tumors, and 0.84 versus 0.80 for
hot tumors). For both tumor polarities, primary images gave a statistically significant increase in detection
accuracy in comparison to the images with an artificially elevated amount of scatter. Here the difference in
areas was larger (0.88 versus 0.81 for cold tumors, and 0.84 versus 0.74 for hot tumors). In no case did SC
result in a statistically significant increase in detection accuracy over no compensation. However, with the
artificially elevated amount of scatter the areas did increase with SC (0.81 with no compensation versus
0.83 with SC for the cold tumors, and 0.74 with no compensation versus 0.78 with SC for the hot tumors).
These results indicate that scatter does decrease lesion detection accuracy, particularly when there is a
significant amount of scatter present. They also suggest that scatter estimation methods may be able to
improve lesion detection accuracy when there is a significant amount of scatter present. It awaits to be
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seen whether RBSC methods are superior to estimation methods for undoing the impact of scatter on
lesion detection.

IV. Spatial Resolution Compensation

A. Restoration filtering

For a shift-invariant linear system in the absence of noise, the image g(x,y) is the convolution of
the object f(x,y) with the point spread function h(x,y), or [14]

∫ ∫
∞

∞−
′′′′′′= yd xd )y-y,x-h(x )y,xf(  y)g(x,  . (8)

By taking the 2D Fourier transform, Equation 8 can be expressed in the frequency domain as

v)F(u,  v)OTF(u,  v)G(u, ⋅=  , (9)

where OTF is the optical transfer function which specifies the changes in both the magnitude and phase of
the frequency components of the object by the imaging system, and u and v are the spatial frequencies.
 We can solve Equation 9 for F by dividing both sides by the OTF. Division by the OTF represents
the inverse filter, and is an example of unregularized restoration filtering [132]. In restoration filtering one
models the degradation (h or OTF), and applies the inverse process with the goal of recovering the
original image. One problem with this approach, of course, is noise. For the case of spatially independent
Poisson noise [133], Equation 9 can be written as:

v)N(u,  v)F(u,  v)OTF(u,  v)G(u, +⋅= , (10)

where N is the contribution due to noise. For images degraded by Poisson noise the average value of the
noise power spectrum (PN), which is the complex magnitude squared of N (||N||2), is a constant equal to
the total number of counts in the image [133, 134]. The object power spectrum (PF) decreases rapidly with
frequency, and the multiplication by the OTF further decreases its contribution to G. Thus, one reaches a
point as the frequency increases where N will be the dominant contributor to G. Application of the inverse
filter will result in a significant amplification of the noise at such frequencies. In restoration filtering one
usually follows the inverse filter at low frequencies, where the contributions of the signal dominate the
image, and then switches to low-pass filtering to avoid excessive amplification of noise when the noise
dominates. A number of filters have been proposed for regularizing restoration [132].

One such filter is the Wiener filter, which uses the minimization of the mean squared error as the
criterion for filter design [134]. The Wiener filter can be written in the frequency domain as:
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where * indicates the complex conjugate. The right-hand side of Equation 11 explicitly shows the Wiener
filter as the product of the inverse filter and a low-pass filter. To apply this filter one needs estimates of
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PN, PF, and OTF. For 2D pre-reconstruction filtering of SPECT acquisition images, PN can be estimates as
the total image count, as stated above. However, for 3D post-reconstruction filtering, estimates of PN need
to be modified to account for the impact of reconstruction [135]. Once one has an estimate of PN, an
estimate of PF can be obtained from the image power spectrum and knowledge of the OTF [111, 134-137].
One is then left with estimation of the OTF. The problem here is that the OTF varies with distance from
the face of the collimator. Thus there is no single OTF that correctly models the blurring for all the
structures in the image.

One solution to the problem of a distance-dependent OTF is to approximate it as distance-
independent, using a single OTF evaluated at a distance equal to the mean free path of the photons being
imaged [134]. A more accurate solution to the problem is offered by the frequency-distance relationship
(FDR) [138]. The FDR states that in the 2D fast Fourier transform (FFT) of the sinogram, the amplitudes
of the signal from any given distance relative to the center-of-rotation (COR) are concentrated along a line
which runs through the origin in the frequency domain. That is:

Angular Frequency = - Distance • Spatial Frequency , (12)

with the negative of the distance being the slope of the line, or

Distance = - Angular Frequency / Spatial Frequency , (13)

where Distance is relative to the COR, so that the distance (d) from the camera face is COR + Distance.
The FDR and the meaning of Equation 13 can be visualized with the aid of Figure 20. Figure 20 shows
two straight lines oriented at 450 passing through the origin of the 2D FFT of the sinogram. Each of these
lines represents a constant value of the ratio of the angular to spatial frequency, and therefore a specific
distance from the COR. In the upper right quadrant of the 2D FFT, both the angular and spatial
frequencies are positive. Any line which passes through the origin of the 2D FFT and is in this quadrant
represents frequency locations at which the signal is concentrated at locations in the source distribution
closer to the camera than the COR. This can be seen by noting that in this quadrant, by Equation 13,
Distance is negative so that d is less than the COR. This quadrant is said to represent “near-field”
locations. In the lower right quadrant, the angular frequencies are negative while the spatial frequencies
are positive. This quadrant represents signal in the source emitted at distances farther away than the COR
since now Distance will be positive. This region represents the “far-field” locations. Thus FDR allows one
to know the distance from the camera at which the signal was emitted, with the exception of the origin
through which all lines or distances pass. Since all OTF’s should be 1.0 at this location, this does not
represent a problem when applying the FDR to a single slice. By modeling the detector point spread
function as a Gaussian function whose width is dependent on d as in Equation 5, spatially variant
restoration filters have been developed [139, 140]. A 3D implementation is achieved by also Fourier
transforming in the between-slice direction (z-axis of projections) [141]. A problem is encountered in
determining what distance to use to select the OTF for deblurring the z-axis transform of the origin since
all distances pass through this location. We have used the average source-to-detector distance for this
purpose [141]. Using the FDR, the Wiener filter can be expressed as
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where w is the inter-slice or axial angular frequency in the 3D FFT of the sinograms, and d is the distance
from the face of the collimator (COR - w/u). The FDR has been expanded to work with body contouring,
as well as with circular camera orbits [142].

Application of the FDR to pre-reconstruction restoration filtering SPECT acquisitions has
advantages in terms of computational load and being linear. It also has several disadvantages [143]. It is
limited as to how much resolution recovery can be obtained without excessive amplification of noise.
Under certain conditions, after FDR pre-reconstruction filtering, transverse slices will contain circular
noise correlations [144]. Also, the FDR is an approximation, especially at low spatial frequencies. Finally,
any form of pre-reconstruction filtering correlates the noise in the projections that will be input to
reconstruction algorithms and MLEM assumes uncorrelated Poisson noise in the projection data.

B. Modeling spatial resolution in iterative reconstruction

Another method to correct for the distance-dependent camera response is the incorporation of a
blurring model into iterative reconstruction [110-112, 145-149]. The problem with this method has been
the immense increase in computational burden imposed when an iterative reconstruction algorithm
includes such modeling in its transition matrix. The use of block-iterative reconstruction algorithms has
been shown to dramatically reduce the number of iterations required to reconstruct slices [110, 150].

Blurring incrementally with distance using the method of Gaussian diffusion [151] can
dramatically reduce the computational burden per iteration. With this method, system spatial resolution in
the absence of scatter is modeled with a Gaussian function whose standard deviation (σ) varies with
distance as per Equation 5. A special property of Gaussians is that the convolution of two Gaussians
produces a Gaussian whose σ equals the square root of the sum of the squares the σ’s of the original two
Gaussians. Thus the system response at some distance di+1 can be expressed as the convolution of the
response at distance di with a Gaussian whose standard deviation (σinc) is given by

( )1/2 

i 
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Sinc )(d - )d(  σσσ += . (15)

The advantage of the incremental approach is that σinc is much smaller than σS(di+1) and thus requires a
smaller-dimension mask to approximate the Gaussian (ie., less computation). In fact, one typically uses a
mask made up of 3 terms to approximate the 1D incremental Gaussian. The first and third mask
coefficients are the same due to the symmetry of Gaussians. Thus, 1D convolution can be implemented by
summing the voxel values to either side of the center location of the mask, multiplying the result by the
coefficient, and adding that result to the center voxel value multiplied by its coefficient. Making use of the
separability of the Gaussian function, one can implement 2D convolution as a 1D horizontal convolution
followed by a 1D vertical convolution. This requires only 4 multiplications and 4 additions per voxel. If a
rotator is used to align the slices with the acquisition angles [77, 152], then the projection and
backprojection steps can be implemented along columns (straight lines). The incremental steps in distance
occur as one moves from one plane (distance from the camera) to the next. The projection can be
implemented by convolving the farthest plane of the slices with the Gaussian for the increment in distance
between that plane and the next plane closer to the detector. The result is then added to the next plane, and
the sum is convolved with the Gaussian for the increment in distance to the next plane. The process is
repeated until the plane nearest the detector is reached. The Gaussian for the distance between the detector
and that plane is used in the final convolution. This will generally require a mask of larger than 3 terms to
sample the Gaussian for this distance without significant truncation. The result is a projection in which the
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blurring varies with distance such that the farthest planes are blurred the most. With backprojection, one
would start by first blurring the projection for the distance between the detector and the first plane of
slices, and incrementally blurring as one proceeds along the slice columns thereafter. Using a step size of
larger than one row can further reduce computational time [153].

Using a 3-term mask to approximate a Gaussian can result in aliasing distorting the desired
response [154]. For the Gaussian diffusion method [151], the mask can be determined from a linear
difference equation approximation of the diffusion partial differential equation
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which describes the diffusion in the direction z (with a diffusion constant α2) of the 3D activity
distribution q(x,y,z). The Gaussian diffusion mask that approximates the blurring from the plane at
distance di to the plane at di+1 is (σ2

inc/2, 1- σ2
inc, and σ2

inc/2) [151]. Use of these coefficients has been
shown to minimize the impact of aliasing compared to alternative ways of defining the mask coefficients
as a function of σinc[154].

Another way of decreasing the computational burden at each iteration is to model spatially variant
resolution only in the projection step [126]. Zeng and Gullberg [127] have recently reported on conditions
which are necessary in order to guarantee convergence of an iterative algorithm when the projector and
backprojector are unmatched.

Even with all these computational enhancements, modeling the PSF in iterative reconstruction is
still slower than restoration filtering. Furthermore, it results in reconstructions where the extent to which a
stationary and isotropic response results depends on the location of the source, the camera orbit, the
number of iterations used, the reconstruction algorithm, and the source distribution [150]. However, it
does avoid the approximation inherent in the FDR, does not alter the noise characteristics of the
projections prior to reconstruction, and has yielded significant improvements in resolution without a
significant increase in noise [109].

C. Impact of resolution compensation on image quality

One of the major impacts of spatial resolution is manifested in the partial-volume effect.
Tomographic systems have a characteristic “resolution volume” that is determined by their 3D PSF [5].
Objects smaller than the extent of the PSF only partially occupy this volume. Therefore, the count
determined at that location only partially reflects the object since it also contains a contribution from
structures beyond this object. The result is that the apparent concentration for objects smaller than 2 to 3
times the FWHM of the PSF will depend on the size and shape of the object as well as the concentration
of activity within the object [155, 156], and the object will be spread out into a region in the slices larger
than its true size [157]. Objects larger in size will have their concentration distorted near their edges by the
partial-volume effect, and will be blurred out into the surrounding region. It has been observed that
modeling of the PSF in iterative reconstruction can reduce the bias in quantitation better than can FDR-
Wiener filtering [158]. However, there are limits to how far even modeling the system resolution in
iterative reconstruction can go in correcting for the partial-volume effect. Thus alternative strategies for
partial volume compensation are of great interest [27, 159].

One question of significant clinical importance is whether restoration filtering or modeling the PSF
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in iterative reconstruction can improve the accuracy of lesion detection. We conducted an LROC
investigation of this using the detection of tumors in simulated thoracic Ga-67 citrate SPECT slices as the
task [160]. When the reconstruction and filtering parameters were optimized for our detection task, we
determined that OSEM with AC and detector resolution compensation (DRC) significantly improves
detection accuracy over that with either OSEM with AC alone, or OSEM with AC and FDR restoration
filtering. In this investigation, five different reconstruction strategies were compared: 1) FBP with
multiplicative Chang AC (current clinical practice); 2) OSEM with AC; 3) OSEM with AC and FDR
restoration filtering; 4) OSEM with AC and Gaussian-Diffusion DRC (GD-DRC); and 5) OSEM with AC
of data simulated with a stationary detector response which just limited aliasing (“ideal case”). The latter
was investigated to serve as an upper limit for DRC. Figure 21 shows example reconstructions for several
lesions for these 5 methods. Note that the visibility of tumors of the same contrast varies with location in
the slices. This illustrates why we believe it is necessary to present lesions at numerous locations when
assessing observer performance. A series of four observer studies, using 5 observers, was conducted. The
first study compared the five methods for a single tumor contrast. The second investigated the impact of
number of iterations of OSEM with GD-DRC on detection accuracy. The third compared lesion detection
for OSEM with and without GD-DRC for 8 different lesion contrasts with observers reading images of a
single contrast at a time. The fourth study compared the 5 reconstruction strategies for observers reading
lesions of 3 different contrasts mixed together. In the fourth study the AL for the 3 contrasts in aggregate
were 0.55, 0.67, 0.67, 0.77, and 0.99, for the 5 methods, respectively. Note the tremendous difference
between current clinical practice and the ideal case we investigated. Also notice that OSEM with AC and
GD-DRC is able to improve detection to approximately halfway between the two. All differences between
pairs of methods were statistically significant except OSEM with AC versus OSEM with AC and FDR
restoration filtering. An interesting observation in this study was that the number of iterations of OSEM
for which the highest detection accuracy was achieved increased from 1 iteration with 8 subsets of 16
angles each for OSEM with AC to 8 iterations of 16 subsets of 8 angles each for OSEM with AC and GD-
DRC. That is, more faithfully modeling the physics of imaging in the transition matrix employed in
iterative reconstruction resulted in an increased number of iterations and improved detection. Eight
iterations was the number determined to be optimal in the preliminary optimization studies. In the second
observer study reported in the paper [159], 6 iterations resulted in a numerically, but not statistically,
larger AL. Eight (or even 6) iterations of OSEM with AC and GD-DRC for 128 by 128 images is time
consuming.

Our results for the improvement in detection accuracy with GD-DRC for simulated Ga-67 citrate
images indicates that there may be a significant clinical impact from using modeling of the PSF with
iterative reconstruction. It remains to be seen whether such an improvement is seen clinically, and whether
improvements in detection are observed for other clinical procedures. A significant improvement in image
quality was reported for modeling the PSF in SPECT imaging of F-18 [161]. Similarly, modeling the PSF
was observed to improve quantitative measures of image quality for cardiac imaging [162, 163] and brain
imaging [164]; however, it has yet to be determined to what extent such modeling improves the detection
of cardiac or brain lesions.

V. Conclusions

From this review we believe it should be evident that solely compensating for attenuation is not
enough to improve SPECT image quality to its fullest extent. Instead, attenuation, scatter, and resolution
as well as correction of patient and physiological motion, and changes in localization during the course of
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acquisition can impact image quality, and thus combined compensation is required. It is our opinion that
as a result of improvements in algorithms and computer hardware, the best way to perform such
compensations is to accurately model the degradations in iterative reconstruction. Evidence is beginning
to be obtained that these compensations do significantly improve the diagnostic utility of SPECT images.
For example, in an ROC study of the accuracy of detection of coronary disease using cardiac-perfusion
SPECT imaging with clinical images, we have recently determined that combined correction for
attenuation, scatter, and spatial resolution is more accurate than FBP or solely AC, or AC and SC [165].
However, it should be remembered that the corrected images look different than the uncorrected images
physicians have grown accustomed to reading. Thus it will require a period of adjustment for the
clinicians to develop a new mental picture of what “normal” looks like before the full potential of the
compensations is realized clinically [79, 166].
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Figure 1.  Illustration of geometry of ideal SPECT imaging.
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Figure 2. Right anterior oblique (RAO), anterior (ANT), left anterior oblique (LAO), and left lateral
(LLAT) projections of a point source in the liver of the MCAT phantom as imaged with no sources of
degradation. Note the consistency in size and shape of the projections.
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Figure 3.  Illustration of impact of attenuation on SPECT imaging. Note that photon A is stopped
photoelectrically, and photon B is scattered such that it is not detected. The result is a decrease in the
counts in the projection data as illustrated.
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 Figure 4.  Right anterior oblique (RAO), anterior (ANT), left anterior oblique (LAO), and left lateral
(LLAT) projections of a point source in the liver of the MCAT phantom as imaged with attenuation of the
photons. Note the lack of consistency in size and shape of the projections, and their decrease compared
Figure 2.
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Figure 5.  Illustration of impact of scatter on SPECT imaging. Notice the addition of the photon from the
liver scattered such that it appears at the incorrect location within the projections.
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Figure 6.  Right anterior oblique (RAO), anterior (ANT), left anterior oblique (LAO), and left lateral
(LLAT) projections of a point source in the liver of the MCAT phantom as imaged with attenuation and
scattering of the photons. Note the extended tails of the PSF’s and the use of logarithmic scaling to make
these tails better visible.
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Figure 7. Illustration of impact of system spatial resolution on SPECT imaging. Notice the distance-
dependent enlargement of the region from which primary photons can contribute to the projections
without penetrating the collimator.
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Figure 8. Right anterior oblique (RAO), anterior (ANT), left anterior oblique (LAO), and left lateral
(LLAT) projections of a point source in the liver of the MCAT phantom as imaged with attenuation and
scattering of the photons, and nonstationary spatial resolution of the system. Note the variation in width
and the use of different scaling compared to Figures 2 and 4. Note also that the low magnitude of the
scatter tails with linear mapping of the relative counts.



King, et al, Attenuation, Scatter, and Resolution Compensation in SPECT 45

Figure 9.  A. Original source distribution from the MCAT phantom. B. FBP reconstruction of ideal
projections of source distribution. C. FBP reconstructions of projections degraded by the presence of
attenuation, scatter, and system resolution. D. FBP reconstructions of projections degraded by the
presence of attenuation, scatter, system resolution, and noise.
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Figure 10. Different configurations for transmission imaging on a SPECT system.
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Figure 11. Comparison of FBP reconstructions without attenuation correction of MCAT phantom
simulations which included solely the influence of distance-dependent resolution. Top row shows
reconstructions of transverse slice illustrated in Figure 1. Bottom row shows polar maps. Left column is
for 1800 reconstruction, and right row is for 3600 reconstruction. Reproduced with permission from [53].
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Figure 12. Comparison of FBP reconstructions without attenuation correction of MCAT phantom
simulations that included influence of distance-dependent resolution and attenuation. Top row shows
reconstructions of transverse slice through LV. Bottom row shows polar maps. Left column is for 1800

reconstruction, and right row is for 3600 reconstruction. Reproduced with permission from [53].
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Figure 13. Comparison of FBP reconstructions with Chang attenuation correction of MCAT phantom
simulations which included influence of distance-dependent resolution and attenuation. Top row shows
reconstructions of transverse slice through LV. Bottom row shows polar maps. Left column is for zeroth
order or multiplicative Chang. Middle column is for one iteration of Chang. Right column is for five
iterations of Chang. Reproduced with permission from [53].
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Figure 14. Comparison of MLEM reconstructions with attenuation correction of MCAT phantom
simulations which included influence of distance-dependent resolution and attenuation. Top row shows
reconstructions of transverse slice through LV. Bottom row shows polar maps. Left column is 30
iterations of 1800 reconstruction. Middle column is for 30 iterations of 3600 reconstruction. Right column
is for 100 iterations of 3600 reconstruction. Reproduced with permission from [53].



King, et al, Attenuation, Scatter, and Resolution Compensation in SPECT 51

P h o to n  E n e rg y  (ke V )

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

R
e

la
ti

v
e

 C
o

u
n

ts

0

2

4

6

8

1 0

T o ta l
P rim a ry
S ca tte r

Figure 15. Total, primary, and scatter energy spectrums generated using the SIMIND Monte Carlo
package for an LAO view of a simulated Tc-99m sestamibi distribution in MCAT phantom.
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Figure 16. Plot of % scatter fraction versus % energy resolution of imaging system for LAO view of
SIMIND simulated Tc-99m sestamibi distribution in MCAT phantom.
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Figure 17. Monte Carlo simulated posterior views of a Ga-67 distribution within the MCAT phantom
illustrating the problem with scatter estimation. From left to right are shown the noisy projection, a
“noise-free” primary only projection, a “noise-free” scatter only projection, and the noise added to the
middle two projections to produce the projection on the far left. Note each image is independently scaled,
and the noise image on the far right contains both positives and negatives with the medium shade of gray
around the outside representing zero.

Figure 18. On the left is shown a Ga-67 energy spectrum with TEW windows and scatter estimate
indicated for its 185 keV photon. On the right side is shown the actual Monte Carlo simulated scatter
distribution in a posterior projection of a Ga-67 source distribution, the TEW estimate from “noise free”
projections, the TEW estimate for noisy projections, and the low-pass filtered TEW estimate from the
noisy projection data.

= + +
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Figure 19. Plot of SIMIND simulated total, primary and scatter PSF’s for LAO view of a slice centered on
axial location of a Tc-99m point source located in the left ventricular wall of the MCAT phantom. Note
asymmetry of the scatter response.



King, et al, Attenuation, Scatter, and Resolution Compensation in SPECT 55

Figure 20.  Drawing illustrating the frequency-distance relationship between sinogram and its two-
dimensional fast-Fourier transform.
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Figure 21. Examples of observer study images.  Along top row arrows in the noise-free images
reconstructed with the “ideal” DRC strategy indicate tumor locations. Noise realizations of the same slices
are shown beneath for each of the DRC strategies. Reproduced with permission from [130].
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